博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
matlab做聚类分析
阅读量:5890 次
发布时间:2019-06-19

本文共 3484 字,大约阅读时间需要 11 分钟。

说明:如果是要用matlab做kmeans聚类分析,直接使用函数kmeans即可。使用方法:kmeans(输入矩阵,分类个数k)。

 

转载一:

MATLAB提供了两种方法进行聚类分析:

1、利用 clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;

2、分步聚类:( 1)用 pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;( 2)用 linkage函数定义变量之间的连接;( 3)用 cophenetic函数评价聚类信息;( 4)用 cluster函数进行聚类。

下边详细介绍两种方法:

1、一次聚类

Clusterdata函数可以视为 pdist、 linkage与 cluster的综合,一般比较简单。

【 clusterdata函数:

调用格式: T=clusterdata(X,cutoff)     

                      等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff) 

2、分步聚类

( 1)求出变量之间的相似性

用 pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用 zscore函数对其标准化

【 pdist函数: 调用格式: Y=pdist(X,’metric’)

 说明: X是 M*N矩阵,为由 M个样本组成,每个样本有 N个字段的数据集

        metirc取值为:’ euclidean’:欧氏距离(默认) ‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离 …

pdist生成一个 M*(M-1)/2个元素的行向量,分别表示 M个样本两两间的距离。这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用 squareform函数将其转化为方阵,其中 x(i,j)表示第 i个样本与第 j个样本之的距离,对角线均为 0.

( 2)用 linkage函数来产生聚类树

【 linkage函数: 调用格式: Z=linkage(Y,’method’)

说明: Y为 pdist函数返回的 M*(M-1)/2个元素的行向量,

  method可取值: ‘single’:最短距离法(默认); ’complete’:最长距离法;

                                  ‘average’:未加权平均距离法; ’weighted’:加权平均法

                                 ‘centroid’质心距离法;       ‘median’:加权质心距离法;

                                 ‘ward’:内平方距离法(最小方差算法)

返回的 Z为一个 (M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。另外,除了 M个样本以外,对于每次新产生的类,依次用 M+1、 M+2、 …来标识。

为了表示 Z矩阵,我们可以用更直观的聚类数来展示, 方法为: dendrogram(Z), 产生的聚类数是一个 n型树,最下边表示样本,然后一级一级往上聚类,最终成为最顶端的一类。纵轴高度代表距离列。

         另外,还可以设置聚类数最下端的样本数,默认为 30,可以根据修改 dendrogram(Z,n)参数 n来实现, 1<n<M。 dendrogram(Z,0)则表 n=M的情况,显示所有叶节点。

( 3)用 cophenetic函数评价聚类信息

【 cophenet函数:   调用格式: c=cophenetic(Z,Y)

  说明:利用 pdist函数生成的 Y和 linkage函数生成的 Z计算 cophenet相关系数。】

cophene检验一定算法下产生的二叉聚类树和实际情况的相符程度 ,就是检测二叉聚类树中各元素间的距离和 pdist计算产生的实际的距离之间有多大的相关性,另外也可以用 inconsistent表示量化某个层次的聚类上的节点间的差异性。

( 4)最后,用 cluster进行聚类,返回聚类列。

 

 

  转载二:

Matlab 提供了两种方法进行聚类分析。

一种是利用 clusterdata 函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;

另一种是分步聚类:(1 )找到数据集合中变量两两之间的相似性和非相似性,用pdist 函数计算变量之间的距离;(2 )用 linkage 函数定义变量之间的连接;(3 )用 cophenetic 函数评价聚类信息;(4 )用cluster 函数创建聚类。

1 .Matlab 中相关函数介绍

1.1  pdist 函数

调用格式:Y=pdist(X,’metric’)

说明:用 ‘metric’ 指定的方法计算 X 数据矩阵中对象之间的距离。’

X :一个m ×n 的矩阵,它是由m 个对象组成的数据集,每个对象的大小为n 。

metric’ 取值如下:

‘euclidean’ :欧氏距离(默认);‘seuclidean’ :标准化欧氏距离;

‘mahalanobis’ :马氏距离;‘cityblock’ :布洛克距离;

‘minkowski’ :明可夫斯基距离;‘cosine’ :

‘correlation’ :                ‘hamming’ :

‘jaccard’ :                   ‘chebychev’ :Chebychev 距离。

1.2  squareform 函数

     调用格式:Z=squareform(Y,..)

     说明:  强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。

1.3  linkage 函数

调用格式:Z=linkage(Y,’method’)

说    明:用‘method ’参数指定的算法计算系统聚类树。

   Y :pdist 函数返回的距离向量;

   method :可取值如下:

  ‘single’ :最短距离法(默认);  ‘complete’ :最长距离法;

‘average ’:未加权平均距离法;  ‘weighted ’: 加权平均法;

‘centroid’ :质心距离法;      ‘median’ :加权质心距离法;

‘ward’ :内平方距离法(最小方差算法)

返回:Z 为一个包含聚类树信息的(m-1 )×3 的矩阵。

1.4  dendrogram 函数

调用格式:[H ,T ,…]=dendrogram(Z,p ,…)

说明:生成只有顶部p 个节点的冰柱图(谱系图)。

1.5  cophenet 函数

调用格式:c=cophenetic(Z,Y)

说明:利用pdist 函数生成的Y 和linkage 函数生成的Z 计算cophenet 相关系数。

1.6  cluster 函数

调用格式:T=cluster(Z,…)

说明:根据linkage 函数的输出Z 创建分类。

1.7  clusterdata 函数

调用格式:T=clusterdata(X,…)

说明:根据数据创建分类。

T=clusterdata(X,cutoff) 与下面的一组命令等价:

Y=pdist(X,’euclid’);

Z=linkage(Y,’single’);

T=cluster(Z,cutoff);

2. Matlab 程序

2.1 一次聚类法

X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900];

T=clusterdata(X,0.9)

2.2  分步聚类

Step1  寻找变量之间的相似性

用pdist 函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。

X2=zscore(X);  % 标准化数据

Y2=pdist(X2);  % 计算距离

Step2    定义变量之间的连接

Z2=linkage(Y2);

Step3  评价聚类信息

   C2=cophenet(Z2,Y2);       //0.94698

Step4 创建聚类,并作出谱系图

     T=cluster(Z2,6);

     H=dendrogram(Z2);

分类结果:{ 加拿大} ,{ 中国,美国,澳大利亚} ,{ 日本,印尼} ,{ 巴西} ,{ 前苏联}

 

转载:http://blog.csdn.net/xuezhisd/article/details/8860485

转载于:https://www.cnblogs.com/michael-xiang/p/4468073.html

你可能感兴趣的文章
谈谈javascript中的prototype与继承
查看>>
DEM 制作
查看>>
js实现分页列表添加样式
查看>>
HDU 1197 Specialized Four-Digit Numbers
查看>>
ARP之windows下的ARP命令
查看>>
软件工程第一次作业
查看>>
centos7磁盘逻辑分区命令_centos7.2下新挂磁盘并创建逻辑组、逻辑卷
查看>>
手机真机访问开发_手机真机和开发者工具图片上传格式不一致
查看>>
华为交换机eth口作用_Eth-trunk配置
查看>>
图标库 vue_关于vue项目font字体图标库导入未显示的问题
查看>>
时序约束优先级_Vivado工程经验与各种时序约束技巧分享
查看>>
nginx win 启动关闭_windows下nginx启动与关闭的批处理脚本
查看>>
python中实参包括哪些_第50p,形参与实参,Python中函数的参数详解
查看>>
minio 并发数_MinIO 参数解析与限制
查看>>
eap wifi 证书_用openssl为EAP-TLS生成证书(CA证书,服务器证书,用户证书)
查看>>
mysql 应用程序是哪个文件夹_Mysql 数据库文件存储在哪个目录?
查看>>
mysql半同步和无损复制_MySQL半同步复制你可能没有注意的点
查看>>
mysql能看见表显示表不存在_遇到mysql数据表不存在的问题
查看>>
使用mysql实现宿舍管理_JSP+Struts2+JDBC+Mysql实现的校园宿舍管理系统
查看>>
mysql alter 修改字段类型_MySQL ALTER命令:删除,添加或修改表字段、修改字段类型及名称等...
查看>>